

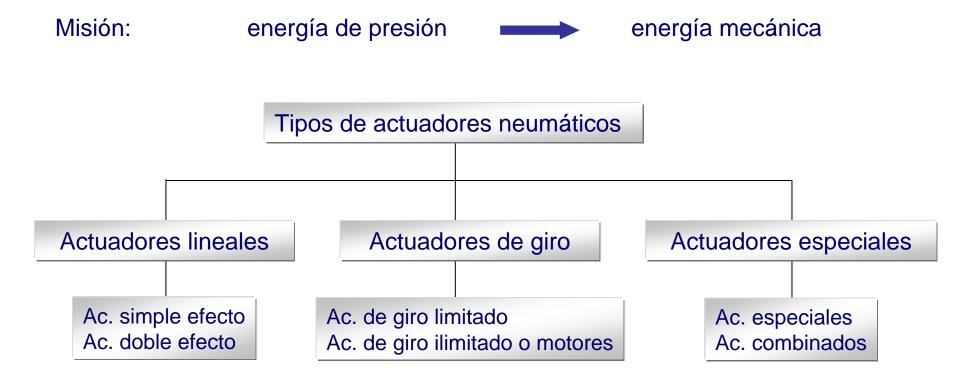
FABRICACIÓN SISTIDA POR ORDENADOR

TEMA 13: ACTUADORES DE LOS SISTEMAS
NEUMÁTICOS

- 1.- Introducción
- 2.- Tipos de actuadores neumáticos
- 3.- Diseño de cilindros

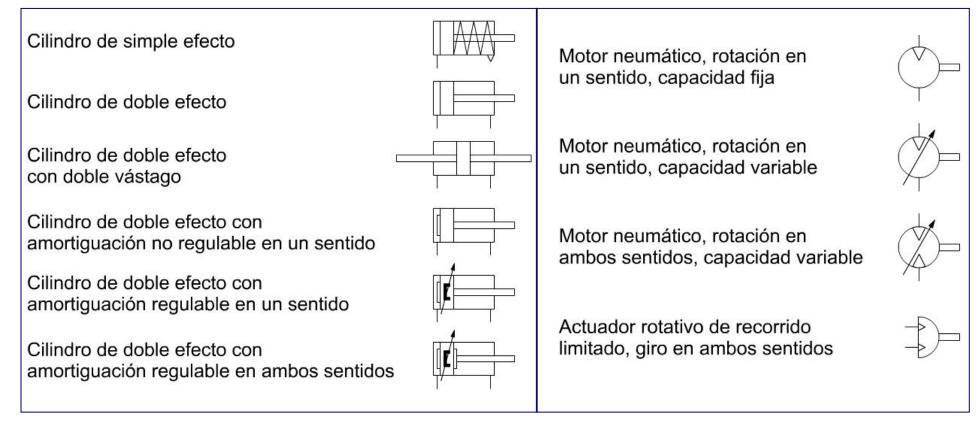
INTRODUCCIÓN

Fiabilidad del sistema neumático


- **☑** Calidad del aire:
 - ✓ Presión correcta
 - ✓ Aire seco
 - ✓ Aire limpio
- Fallos en la instalación

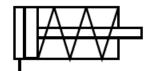
INTRODUCCIÓN

Los **cilindros neumáticos** independientemente de su forma constructiva, representan los **actuadores más comunes** que se utilizan en los circuitos neumáticos.


INTRODUCCIÓN

Simbología de los actuadores

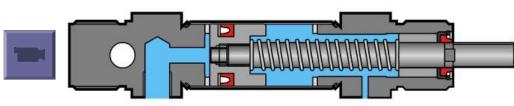
actuadores lineales

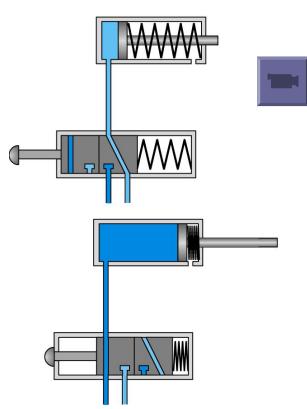

actuadores angulares

Actuadores lineales

1. Cilindros de simple efecto.

<u>Funcionamiento:</u> En los cilindros de simple efecto, el émbolo recibe el aire a presión por un solo lado. Estos cilindros sólo pueden ejecutar el trabajo en un sentido (carrera de trabajo).


La carrera de retorno del émbolo tiene lugar por medio de un muelle incorporado, o bien por fuerza externa (carrera en vacío).


Activación: válvula 3/2 vías

Ventaja: reducido consumo de aire

Aplicación: elemento auxiliar

- > Cilindros de émbolo
- > Cilindros de membrana
- > Cilindros de fuelle

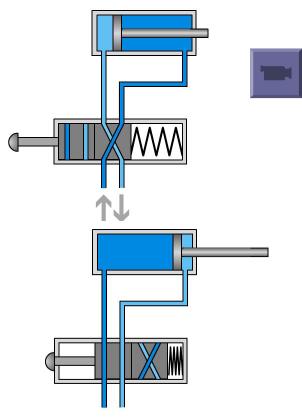
Actuadores lineales

2. Cilindros de doble efecto

<u>Funcionamiento:</u> El émbolo recibe aire a presión alternativamente por ambos lados. El cilindro puede trabajar en ambos sentidos. Es el más utilizado.

Dependiendo de la carga Cilindros sin amortiguación. Cilindros con amortiguación.

Activación: válvulas 4/2, 5/2 y 5/3

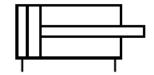

Ventajas:

Producen trabajo en ambos sentidos

No se pierde fuerza en comprimir el muelle

Retorno independiente de la carga

Se aprovecha como carrera útil toda la longitud del cilindro



Actuadores lineales

2. Cilindros de doble efecto

Dependiendo de la carga Cilindros sin amortiguación Cilindros con amortiguación

Evitar impactos del émbolo contra la camisa que liberan gran cantidad de energía que tiende a dañar el cilindro.

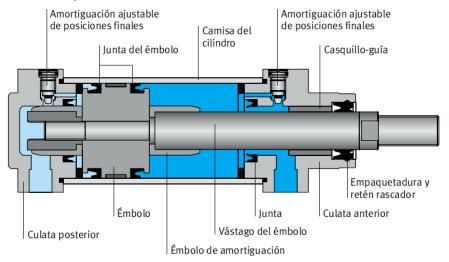
Componentes del cilindro de émbolo:

1) Tubo o camisa

Material: acero embutido sin costura (St. 35) o aluminio

Parámetros imp: diámetro y longitud

2) Tapa posterior (fondo) y tapa anterior con cojinete y aro rascador


Material: fundición

Unión al cuerpo: tirantes, roscas o bridas

- 3) Émbolo
- 4) Vástago

Material: acero bonificado con algo de cromo y rosca laminada

5) Piezas de unión y juntas: Collarín obturador, casquillo de cojinete, aro rascador y manguito de doble copa

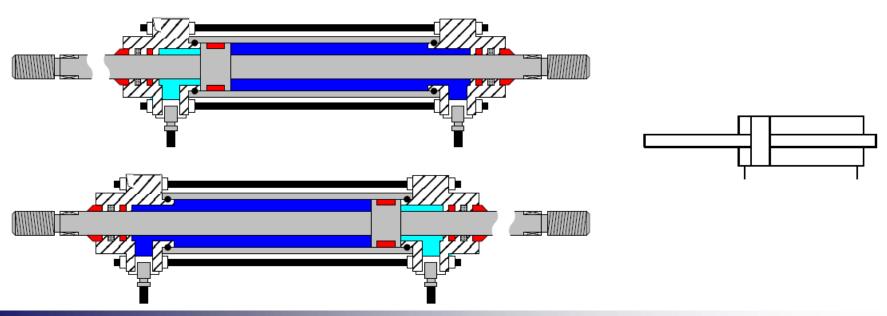
Actuadores lineales especiales

Un ejemplo son los cilindros que debe trabajar en atmósferas agresivas o contaminantes.

Particularidades: vástago de acero inoxidable, acero resistente a los ácidos o aleaciones especiales. Fuelles.

> Cilindro telescópico

Elementos de elevado coste que encuentran su aplicación en largas carreras con mínimo espacio de recogida.



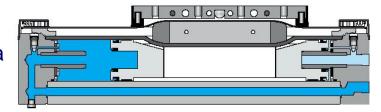
Actuadores lineales especiales

Cilindro de doble vástago

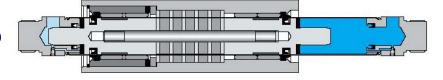
Tiene un vástago corrido hacia ambos lados. El guiado del vástago es mejor porque dispone de dos cojinetes y la distancia entre éstos permanece constante. Por eso, este cilindro puede absorber también cargas laterales pequeñas.

Fuerza de avance = Fuerza de retorno Velocidad de avance = Velocidad de retorno

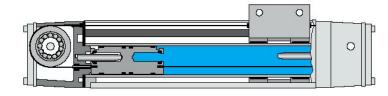
Tema 13. Actuadores de los sistemas neumáticos


Actuadores lineales especiales

Cilindro sin vástago

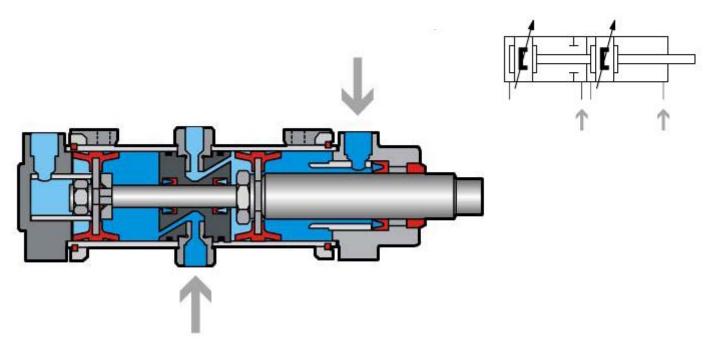

Puede realizar el mismo trabajo en ambos sentidos. Son cortos y no hay peligro de que el vástago pueda torcerse. Pueden efectuarse carreras de hasta 10m de largo.

Fuerza de avance = Fuerza de retorno Velocidad de avance = Velocidad de retorno


Cilindro de banda hermética con camisa ranurada

Cilindro con acoplamiento magnético del carro

Cilindro de cinta o de cable

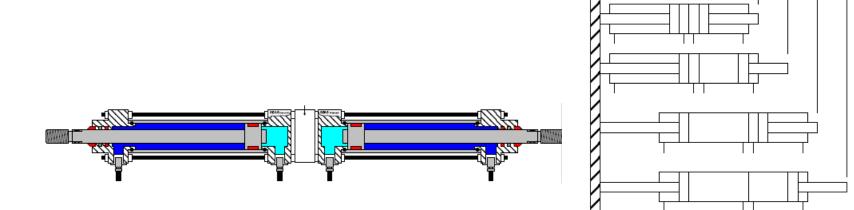


Actuadores lineales especiales

Cilindros tandem y triples

Constituido por dos cilindros de doble efecto que forma una unidad que es capaz de generar casi del doble de la fuerza de un cilindro normal para el mismo diámetro. Aplicación: donde el espacio disponible no permite la colocación de dos cilindros y se requiera una fuerza considerable.

A- B+


A+ B-

A+ B+

Actuadores lineales especiales

Cilindros multiposicionales

Los cilindros multiposicionales son una buena opción el aquellos casos en los que se requiera alcanzar 3 ó 4 posiciones diferentes y no se requiera una variabilidad frecuente de las mismas.

Actuadores lineales especiales

Cilindros alternativos

Genera un movimiento automático de vaivén por efecto de los mandos incorporados en los propios cabezales de los cilindros.

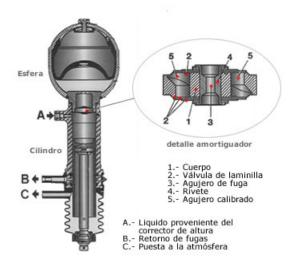
<u>Aplicaciones:</u> mezcladores, agitadores, tamices, alimentación de cintas transportadoras.

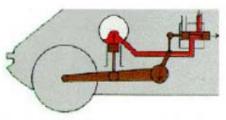
> Cilindros de impacto

Trabajan al choque utilizando la energía cinética desarrollada por el vástago y el émbolo para desplazarse a gran velocidad.

Aplicaciones: punzonado, remachado, marcado.

Actuadores lineales especiales

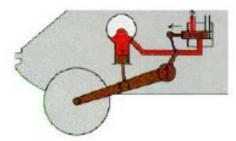

Cilindro amortiguador oleoneumático

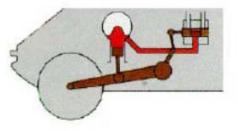

Función: absorción de impactos.

Aplicaciones: suspensión de vehículos o plataformas,

regulación de esfuerzos de apriete.

Esquema interno del cilindro y amortiguador de suspensión

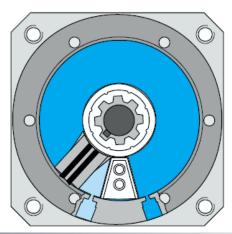



1 Al aumentar la carga, la carrocería se hunde y opera un dispositivo, que mueve un distribuidor de corredera que permite el paso de liquido al cilindro

Al pasar el liquido al cilindro se eleva la carrocería, invirtiendose el movimiento hasta que el distribuidor alcanza su posición central y se recupera el nivel.

3 Al disminuir la carga, la carrocería se eleva y permite que el distribuidor de corredera abra el conducto de retorno, por el que fluye el liquido sobrante del cilindro. Al salir el liquido de éste, la carrocería se asienta sobre su suspensión.

4 Cuando el distribuidor se encuentra en su posición central, el liquido continua fluyendo al depósito hidráulico hasta que el coche recupera su altura normal. La posición central se mantiene hasta que vuelve a modificarse la carga del coche.


Actuadores de giro

1. Actuadores de giro limitado

Proporcionan movimiento de giro pero no llegan a producir una revolución (exceptuando alguna mecánica particular como por ejemplo piñón – cremallera). Existen disposiciones de simple y doble efecto para ángulos de giro de 90°, 180°..., hasta un valor máximo de unos 300°.

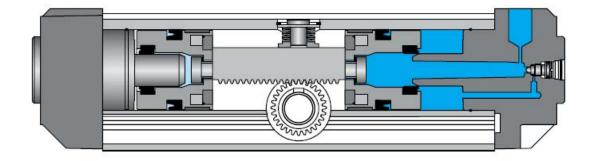
> Actuador de paleta

El aire a presión acciona una aleta oscilante. Realiza un movimiento de giro que rara vez supera los 270°, incorporando unos topes mecánicos que permiten la regulación de este giro.

Actuadores de giro

1. Actuadores de giro limitado

Cilindro rotativo

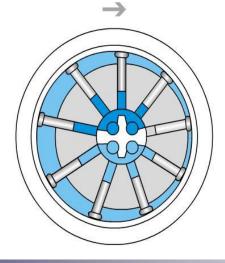

En este actuador, el vástago es una cremallera que acciona un piñón y transforma el movimiento lineal en un movimiento giratorio, hacia la izquierda o hacia la derecha, según el sentido del émbolo.

Ángulos de giro: 45°, 90°, 180°, 290° hasta 720°.

Par de giro: aprox. 0,5 Nm hasta 150 Nm a 600 kPa (6 bar) de presión de servicio, dependiendo del diámetro del émbolo.

<u>Aplicaciones:</u> voltear piezas, doblar tubos metálicos, regular acondicionadores de aire, accionar válvulas de cierre, válvulas de tapa, etc.

Actuadores de giro

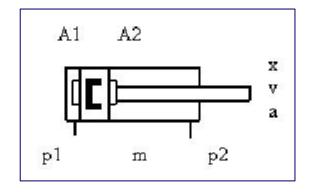

2. Actuadores de giro ilimitado o motores neumáticos

Proporcionan un movimiento rotatorio constante. Se caracterizan por proporcionar un elevado número de revoluciones por minuto.

Motores neumáticos de paletas

Dentro de los actuadores de giro ilimitado, éstos son los más empleados por su construcción sencilla y su reducido peso. Funcionamiento similar a los compresores de paleta.

Aplicaciones: herramientas portátiles neumáticas (taladradoras, esmeriladoras, etc.)


Factores para la elección de un cilindro neumático

- 1. Tipo de cilindro
- 2. Diámetro interior
- 3. Diámetro del vástago y su carrera
- 4. Velocidad del émbolo
- 5. Fuerza del émbolo
- 6. Amortiguación
- 7. Posición
- 8. Forma de fijación
- 9. Temperatura
- 10. Presión de la red
- 11. Presión de trabajo
- 12. Tipo de trabajo: estático o dinámico

1. Cálculo de la fuerza del émbolo

$$p_1 \cdot A_1 - p_2 \cdot A_2 - m \cdot a - F_R - F_W - F_E - F_S = 0$$

$$F_{TEÓRICA} = p \cdot A = p \cdot \frac{\pi}{4} \cdot D^2$$

P₁ sobrepresión en la conexión 1

P₂ sobrepresión en la conexión 2

A₁ superficie efectiva en el lado de la conexión 1

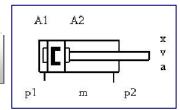
A₂ superficie efectiva (anular) en el lado de la conexión 2

m masa que mueve el cilindro

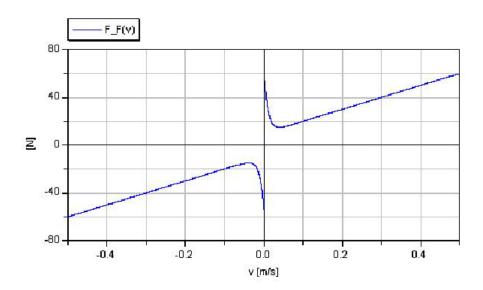
a aceleración de la masa en movimiento

F_R rozamiento según la velocidad

F_w contrafuerza de la gravedad durante el avance


F_E fuerza definida por el usuario

F_S fuerza del muelle de cilindros de simple efecto



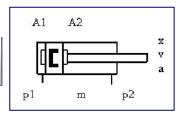
1. Cálculo de la fuerza del émbolo

$$p_1 \cdot A_1 - p_2 \cdot A_2 - m \cdot a - F_R - F_W - F_E - F_S = 0$$

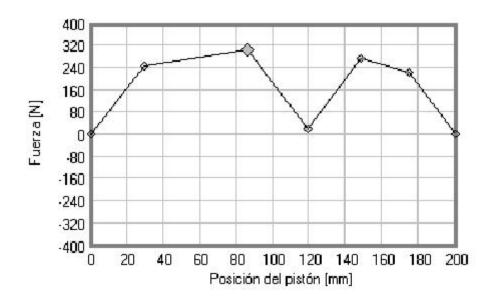
F_R rozamiento según la velocidad

Pérdidas del 3 – 20%

F_w contrafuerza de la gravedad durante el avance


$$F_W = m \cdot g \cdot \sin(\alpha)$$

- m masa que mueve el cilindro
- g aceleración gravitacional
- α ángulo de posición del cilindro con respecto a la htal.



1. Cálculo de la fuerza del émbolo

$$p_1 \cdot A_1 - p_2 \cdot A_2 - m \cdot a - F_R - F_W - F_E - F_S = 0$$

F_E fuerza definida por el usuario

F_s fuerza del muelle de cilindros de simple efecto Cálculo empírico

Diámetro del émbolo (mm)	25	32	40	50	63	80	100	125	160	200	250	300	350	400
Superfi- cie del émbolo (cm²)	4,9 4,4	8 6,9	12,6 11,1	19,6 17	31,2 28,7	50 46,2	78 71,8	122,7 114,7	201 189,4	314,1 301,5	490,8 471,2	706 686	962 929	1256 1223
Fuerza de recupera- ción del muelle (kg)	3	6	10	10	12	14	24	_	_	` _	_	_	-	_

Para obtener el cálculo real, a esta ecuación habría que añadirle el rendimiento del cilindro (70-90%)

1. Cálculo de la fuerza del émbolo

Función de: presión del aire, diámetro del émbolo y rozamiento de las juntas.

Fuerza teórica (sin rozamientos)

$$Ft = A \cdot P = \frac{\pi}{4} \cdot D^2 \cdot P$$

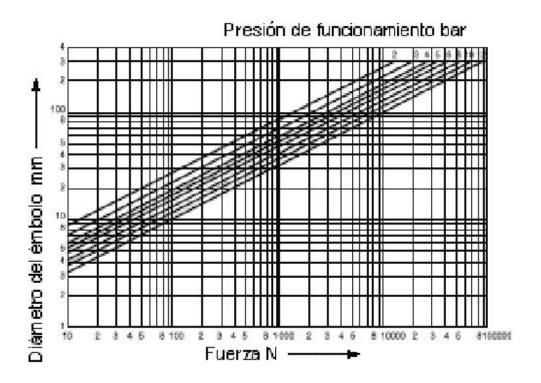
Fuerza nominal (con rozamientos)

$$Fn = A \cdot P - F_S - F_R = \frac{\pi}{4} \cdot D^2 \cdot P - (F_S) - F_R$$

F_S: fuerza de retroceso del muelle (simple efecto)

 F_R : fuerza de rozamiento (3% – 20%)

Fuerza efectiva


$$Fe = A \cdot P - F_S - F_R = \left[\frac{\pi}{4} \cdot D^2 \cdot P - (F_S) - F_R\right] \cdot \eta$$

1. Cálculo de la fuerza del émbolo

El rendimiento se encuentra entre el 70% y el 90%, dependiendo, entre otros, de:

- Estado de la superficie interior del cilindro
- Rozamiento de las juntas
- > Tipo de engrase
- Presión de aire

1. Cálculo de la fuerza del émbolo

El reglaje de la fuerza se consigue mediante los reguladores de presión a la entrada del cilindro. En el cálculo es necesario <u>sobredimensionar</u>.

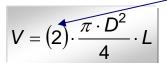
- Margen de seguridad sobre la fuerza:
 - Variaciones en la demanda del cilindro
 - Variaciones de presión en la red de distribución
 - Fricción entre cilindro y carga

Valores más usuales:

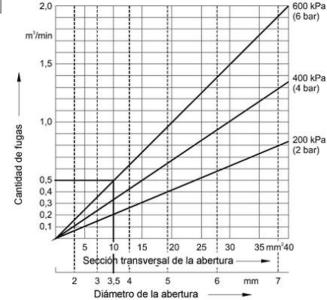
- Fuerzas bien definidas y velocidades lentas: 30%
- Accionamientos corrientes: 40% 50%
- Fuerzas no definidas, velocidades altas y cargas grandes: 60% 80%
- Margen de seguridad sobre la presión.
- Intervalo de presiones.

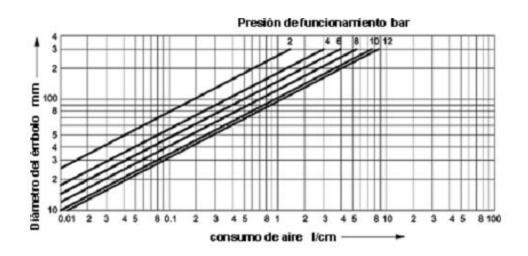
2. Cálculo del consumo de aire

Para disponer de aire y conocer el gasto de energía, es importante conocer el consumo de la instalación, cálculo que comenzará por los actuadores.


$$Q = \frac{V \cdot f}{1000}$$

+ volúmenes no evaluados (20% - 30%)


Q caudal [l/min]


volumen de aire en cada ciclo de trabajo $V = (2) \cdot \frac{\pi \cdot D^2}{2}$

frecuencia de los ciclos [ciclos/min]

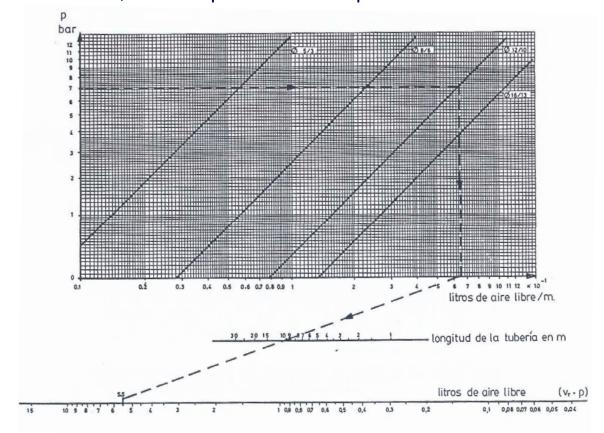
Doble efecto

2. Cálculo del consumo de aire

Para disponer de aire y conocer el gasto de energía, es importante conocer el consumo de la instalación, cálculo que comenzará por los actuadores.

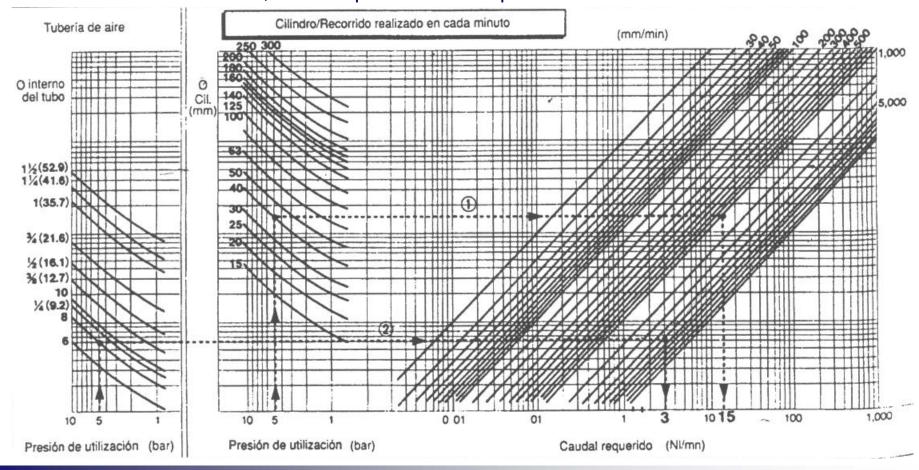
0	sión le	Diámetro interior del cilindro en mm											
	bajo bars	25	32	40	50	63	80	100	125	160	200		
0	a b	0,009	0,015 0,000	0,023 0,000	0,036 0,000	0,059 0,0	0,096 0,000	0,150 0,000	0,237 0,000	0,389 0,000	0,615		
1	a b	0,017 0,004	0,030 0,007	0,046 0,010	0,072 0,026	0,118 0,037	0,191 0,055	0,298 0,080	0,475 0,114	0,779 0,166	1,231		
2	a	0,026	0,045	0,069	0,108	0,178	0,287	0,447	0,712	1,168	1,84°		
	b	0,008	0,014	0,020	0,052	0,074	0,110	0,160	0,228	0,332	0,488		
3	a	0,035	0,060	0,092	0,144	0,237	0,382	0,596	0,949	1,557	2,463		
	b	0,012	0,021	0,030	0,078	0,111	0,165	0,240	0,342	0,498	0,733		
4	a b	0,043 0,016	0,075 0,028	0,116 0,040	0,181 0,104	0,296 0,148	0,478 0,220	0,745 0,320	1,186 0,456	1,947 0,664	3,079		
5	a	0,052	0,090	0,139	0,217	0,355	0,573	0,894	1,424	2,336	3,69-		
	b	0,020	0,035	0,050	0,130	0,185	0,275	0,400	0,570	0,830	1,220		
6	a	0,061	0,105	0,162	0,253	0,414	0,669	1,043	1,661	2,726	4,310		
	b	0,024	0,042	0,060	0,156	0,222	0,330	0,480	0,684	0,996	1,464		
7	a	0,070	0,120	0,185	0,289	0,473	0,765	1,192	1,898	3,115	4,920		
	b	0,028	0,049	0,070	0,182	0,259	0,385	0,560	0,798	1,162	1,708		
8	a	0,078	0,135	0,208	0,325	0,533	0,860	1,341	2,135	3,504	5,542		
	b	0,032	0,056	0,080	0,208	0,296	0,440	0,640	0,912	1,328	1,952		
9	a	0,087	0,150	0,231	0,361	0,592	0,956	1,490	2,373	3,894	6,157		
	b	0,036	0,063	0,090	0,234	0,333	0,495	0,720	1,026	1,494	2,196		
10	a	0,096	0,164	0,254	0,397	0,651	1,051	1,639	2,610	4,283	6,773		
	b	0,040	0,070	0,100	0,260	0,370	0,550	0,800	1,140	1,660	2,440		

Tipo de aparato	Consumo con plena carga NL/min.	Tipo de aparato	Consumo con plena carga NL/min.	
Taladro Ø 6 mm	300	Prisión para moldes pequeños	350	
Taladro Ø 12 mm	500	Pisón 8 Kg.	700	
Taladro Ø 20 mm	1150	Remachador Ø 10	450	
Taladro Ø 45 mm	1650	Remachador Ø 20	1000	
Destornillador o atornillador M 6	300	Cincel 4 Kg.	380	
Destornillador o atornillador M 10	400	Cincel 6 Kg.	500	
Atornillador de impulsos M 6	1150	Pistola pequeña pint.	160	
Atornillador de impulsos M 25	1650	Pistola pequeña pint.	500	
Esmerilador de muela Ø 1"	350	Fuelle de limpieza Ø 1mm	65	
Smerigliatrice per mole a disco Ø 6"	1500	Fuelle de limpieza Ø 2mm	250	
Smerigliatrice per mole a disco Ø 9"	2100	Limpiadora de arena con boquilla Ø 5	1600	
Pulidora	1200	Limpiadora de arena con boquilla Ø 8	4200	
Aparejo 100 Kg	2150	Enlucidota	500	
Soldador de puntos	300	Vibrador pesado para hormigón	2500	
		Martillo demoledor 35 Kg	1650	
		Perforadora 18 Kg.	1850	
		Perforadora 30 Kg.	2850	


a = Consumo en litros de aire libre para una carrera de 1 cm (avance y retroceso).
 b = Consumo en litros de aire libre en un ciclo de trabajo para el llenado del espacio muerto existente en los finales de carrera del émbolo.

2. Cálculo del consumo de aire

Para disponer de aire y conocer el gasto de energía, es importante conocer el consumo de la instalación, cálculo que comenzará por los actuadores.


Ábaco para la determinación del volumen de aire libre en tuberías de interconexión

2. Cálculo del consumo de aire

Para disponer de aire y conocer el gasto de energía, es importante conocer el consumo de la instalación, cálculo que comenzará por los actuadores.

3. Cálculo de la velocidad de desplazamiento

La velocidad es la suma del tiempo de respuesta y el tiempo de carrera. La velocidad media del émbolo, en cilindros estándar, está comprendida entre 0,1 y 1,5 m/s. Con cilindros especiales (cilindros de impacto) se alcanzan velocidades de hasta 10 m/s. La velocidad del émbolo puede regularse con válvulas especiales: válvulas de estrangulación, antirretorno, de estrangulación y de escape rápido.

Dificil obtención de una velocidad de desplazamiento constante (experiencia).

Función de:

- Estado de las superficies del émbolo y de las camisas
- Composición y dureza de las juntas
- Tolerancias de fabricación.
- Existencia de lubricación (velocidades medias y elevadas)
- Presión de la red (colocación de reguladores)

<u>Tiempo de respuesta:</u>

Mientras la presión de una cámara no supere la presión de la otra cámara, el cilindro no se mueve. El cilindro tiene que vencer:

- Cargas
- Rozamiento estático

Tema 13. Actuadores de los sistemas neumáticos

4. Longitud de carrera

La carrera es la distancia recorrida por el émbolo entre sus dos posiciones extremas. La longitud de carrera en cilindros neumáticos no debe exceder de 2000 mm. Con émbolos de gran tamaño y carrera larga, el sistema neumático no resulta económico por el elevado consumo de aire y precio de los actuadores.

Están normalizadas.

Riesgo de pandeo elementos de apoyo externos

Guiado de cilindros: Se fabrican en acero y se acoplan sobre la culata anterior de los cilindros normalizados. En su interior se encuentran unos cojinetes de bronce sintetizado por los cuales se deslizan las varillas de guiado.

Diáme- tro del cilindro en mm						ción del						-		
	Vástago sin guía							Vástago con guía						
	5	6	7	8	9	10	5	6	7	8	9	10		
28	610	550	500	460	430	410	1220	1100	1000	920	860	820		
40	1130	1030	950	890	840	800	2260	2060	1900	1780	1680	1600		
57	1220	1120	1030	960	910	870	2440	2240	2060	1920	1820	1740		
75	1340	1220	1130	1060	1000	950	2680	2440	2260	2120	2000	1900		
102	980	900	830	780	740	710	1960	1800	1660	1560	1480	1420		
120	1490	1380	1280	1190	1120	1060	2980	2760	2560	2380	2240	2120		
150	1230	1120	1030	950	890	840	2460	2240	2060	1900	1780	1680		
180	1550	1420	1310	1230	1160	1100	3100	2840	2620	2460	2320	2200		
220	1280	1170	1080	1010	950	900	2560	2340	2160	2020	1900	1800		
270	1630	1480	1370	1280	1210	1150	3260	2960	2740	2560	2420	2300		